
2IOI0 PROCESS MINING 2019 
 

 

 

  
 
 

 

INTRODUCTION 
The goal of this project was to predict the remaining cycle time 

of a request into an administrative system. Different models were 

designed and tested on the different datasets provided. We 

focussed on the datasets ‘BPI Challenge 2012’ and ‘BPI 

Challenge 2019’. The best performing models were a Random 

Forest and our Naive++. Therefore, these models were 

implemented and optimized for the final dataset. 

METHODS 
Before training our models, we performed several pre-processing 

methods. For the 2012 dataset, we split the events into 3 

processes: ‘automatically declined within an hour’, ‘automatically 

cancelled after 31 days’, and ‘rest’. The data was already 

divided into 4 categories in the 2019 dataset. We divided the 

2019 data into 15 buckets. Each bucket contains data from the 

RANDOM FOREST ESTIMATOR 
A Random Forest builds multiple decision trees and averages over them to get an 
accurate and stable prediction. It does this by adding randomness to the model: 

instead of searching for the most important feature while splitting a node, it 

searches for the best feature among a random subset of features. The most 

important features for the 2019 dataset are ‘event concept:name == Clear 

invoice’, ‘event time:timestamp’, ‘case Sub spend area text == 

Labels’, ‘event Cumulative net worth (EUR)’, ‘day of week’, ‘day of 

month’, ‘time spent’. Tuning the hyperparameters can make the model faster 

and the prediction better. We used a Grid Search method to find the best 

hyperparameters for the 2012 dataset. For the 2019 dataset, we ran into memory 

issues due to the fact that we had to train a new model for each consecutive bucket. 

Therefore, we used less optimal parameters which still resulted in a lower RMSE. 
 

MODEL EVALUATION 

first event until a specific timestamp. For each bucket a separate 

model is trained. This speeds up the running time immensely. 

Furthermore, we have removed outliers. 

END CASES 
We removed all incomplete cases to avoid undesired impact on 

The Root Mean Squared Error (RMSE) is our 

chosen performance evaluation metric. It gives 

the measure of how far the predictions are 

from the actual output. 

RESULTS 

Formula 1. Calculation of the RMSE. is 

the observed cycle time and is the 

predicted cycle time for row i, is the 

number of observations. 

the predictions. For this, we created a generic algorithm that 

looks at the last event of each case, and counts how often these 
events appear. It then finds the top five most occurring ending- 
events in the dataset. For the 2019 dataset, we found that 5% 
of the cases were incomplete. The top five final events for the 
2019 dataset are ‘Clear Invoice’, ‘Record Goods 

Receipt’, ‘Record Invoice Receipt’, ‘Delete 

Purchase Order Item’, and ‘Create Purchase Order 

Item’. For the 2012 dataset, we looked at the top three most 

occurring ending events. These are ‘A_ACTIVATED’, 

‘A_DECLINED’ and ‘A_CANCELLED’. 

NAIVE ESTIMATOR 
For both datasets, we first created a Naive prediction model. 

For each event, this model predicts the remaining time as the 

average time between the first and last event of a case minus 

the time already passed. Also, negative predictions are 

replaced with zero. 

NAIVE++ ESTIMATOR 
For the 2019 dataset, we created an improved version of our 

We have deemed the first 25% of the test data as unpredictable due to small 

training dataset. 

2012 DATASET 2019 DATASET 

  

Naive estimator by differentiating between the 4 different 

categories. We also calculated the mean per bucket. So in the 

end we used 60 means to predict the remaining time. 

NEURAL NETWORK ESTIMATOR 

Figure 2. Scatter plot of 

predictions using the Neural 

Network estimator on the 2012 

data 

RESOURCE USES 

Figure 3. Scatter plot of 

predictions using the Naive++ 

estimator on the 2019 data 

Figure 4. Scatter plot of 

predictions using the Random 

Forest estimator on the 2019 

data 

We then made a Neural 

Network prediction model for 

both datasets. For this, we 

used the library Keras. The 

network was optimized by 

adding layers (see figure 1). 

All layers in the figure were 

used for the 2012 dataset. 

For the 2019 dataset, only 

the layers with red outline 

were used. The ‘2012 model’ 

 

 

Figure 1. Layers for the Neural 

Network model 

We have measured memory usage (RAM, in Megabytes) and running time (in 

seconds) for training both predictors, and the actual predicting process. Training the 

Naive predictor is not that intensive: it peaks at approximately 2200 MBs of RAM 

and takes 60 seconds to run on the full dataset (see figure 5). Our Random Forest 

model, however, uses a lot of RAM: it peaks at 12000 MBs of RAM and training 

takes 8000 seconds, a little over two hours (see figure 6). After having trained both 

models, predicting for all cases and events takes 700 seconds, and peaks at around 

8000 MBs of RAM (see figure 7). 

was trained with 5 epochs and the ‘2019 model’ with 2 epochs. 

This model uses a on-the-fly technique for training, because it 

updates the already trained model when adding new training 

data. We decided to stop improving this model and 

concentrate on our other estimator 

 
 
 
 

Figure 5. Memory Usage for 

training Naive Predictor 

 
 
 
 

Figure 6. Memory Usage for 

training Random Forest 

 
 
 
 

Figure 7. Memory Usage for 

predicting 

Predictor RMSE 

(days) 

RMSE (days) 

no future 

data 

Naive 90.0  

Naive ++  32.4 

Random Forest 55.7 55.4 

Neural 

Network 

876.3 496.5 

 

Predictor RMSE 

(days) 

RMSE 

(days) no 

future data 

Naive 8.9  

Random Forest 7.7 12.9 

Neural 

Network 

9.3 9.3 

 


