Does Twitter Fly?
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Objectives Results - Exploratory # Discussion & Conclusi
During the last few years, American Airlines has allocated a Amount of Sent and Received Tweets@AmericanAir Figure 1 shows that there is a significant drop in the amount of
great amount of resources to a Twitter Team that focusses on G o . tweets and responses during the night. This coincides with a
dealing with customer complaints and maintaining a strong § oo — zﬁ;@ﬁgﬁi;w decrease in flights during that period. In addition, figure 6 shows
bond with their customers. The main aim of the team is to make 5 000 that during this period customers start the conversation less happy
sure that customers have a positive association towards g2 than during the day. Moreover, this effect is stronger during the
American Airlines. =™ ] J ] ] ] ] ] ] ] ] ] ] ] ] ] ] J ] j j ] ] weekend than during the week. Furthermore, figure 1 shows that
b the American Twitter Team is active during the night, so the less
At this point in time, American Airlines has come to evaluate the , o - satisfied customers are addressed.
performance of the Twitter Team. Consultants from ASK YARD Figure 1: Distribution O]c(lﬁttfdrilrf;zo’ar\ll—rlfllr]r:g?i;t\t\\i\?eii)per hourofithe day (€D Figure 2 and 3 indicate that American Airlines has by far the most
have been asked to do a performance analysis of the American Conversations & Response Rates per Airline conversations compared to competitors and also the highest

Airlines Twitter Team.

response rate. Although the gaps in the data may make the

oo [ | | | response rates seem lower than they actually are, it is clear that the
MethOdOIOgy | | | | | ‘ ‘ ‘ | response rate can be improved.

Figure 4 shows that American Airlines has one of the fastest and
most steady reply times, as they have one of the lowest means and
lowest standard variations. In addition, figure 5 shows that all
airlines have a majority of 2-tweet conversations, followed by 3- and
4-tweet conversations. This means that the majority of
conversations (2-tweet) will give no information on the change of
sentiment during the sentiment analysis, as there is only one
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containing tweets in JSON format. Using a Python script, a
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subset of characteristics of all tweets is extracted, without
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unzipping the individual files, thus saving valuable time and
space. The approximately 5.5 million tweets are stored in a = II T

SQLite database. Through SQLite queries in Python, the 20000
necessary data for further analysis is extracted.
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25 R N NN B T ° 3 %3 The overall change in sentiment in figure 7 indicates that American
:> :> ?SQLHLE :> Figure 2: Comparison of conversations Figure 3: Comparison of response rates Alrll.n.es 1S Changlng th.e. Sen_tlment Of cestomers WhO Stgrt OUt_aS
N\ l:lthOﬂ gthOﬂ (including conversations with non-English tweets) (including conversations with non-English tweets) pOSItIVE or very pOSItIVE IN a negatlve way, while INCreasing

Average ReplyTlme&Conversatlon Length perAlrllne customer sentiment when customers start out as negative, VEery

negative or neutral. However, all of these average changes are

Complexity = O(n) 00
Database i much smaller than their standard deviations. This means that the
550 cacycot | -
W TweetID W User that is replied to e I | C1'2NEE IS NOL very stable.
) UserID §) Who is mentioned in tweet Br“““’““"‘“"“‘““"_: Figure 8 compares the first sentiment to the average sentiment of
ArFrance [ —— . : . . . ‘s
Timestamp i Language e T = | | the remaining tweets and determines if this is higher (positive

' Sngaporcar I U change), lower (negative change) or neutral (no change). American
Lutnans I Airlines has the most positive changes, but also the most negative

+ pirgortin | changes. In general, the more positive change, the more negative
hadaiways I
Eihedhimy “ | changes as well.
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May ............................. I I I I I o e RN 1 Figure 9 shows that the change in sentiment does not change when
iy e ENEEEE il = ==: mms =mms s == | the conversation length increases, regardless of whether the
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Sept i < £ 3 8% 1§53 nalerephsArBerinincludesABerinAssis tweet is. The standard deviation is high, but consistently so.
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o EREEEEN = Flgure 4: Comparison ol reby (Ime Figure 5: Comparison of conversation length Finally, figure 10 shows that the average customer of American
Jan | | | | || LT T ) Airlines is more negative compared to competitors, but that the
b Results - Sentiment A Twitter Team is overall more positive than the average competitor.
— . — — L N . This and the results of figure 8 shows that the American Airlines

Legend: | Available Data [l Missing Data  Non-existing Days Initial Tweet Sentiment Twitter Team is able to make a difference in customer sentiment.
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competitors, as American Airlines processes more conversations
than any other airline, their response rate is the highest, and their
reply time is great as well. However, the following is recommended:

« Since American Airlines already has a positive impact on

A conversation starts with a tweet that
mentions @AmericanAir, to which American
Airlines responds. The conversation length is
defined as the length of the chain of replies to
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the initial tweet, inCIUding the initial tweet and Figure 6: Initial tweet sentiment per hour of the day (ET) and day of the week customers with negative sentiments. It is important to focus on
only following the original user. . . the positive tweets. American Airlines should critically revise the
, , . Overall Change in Sentiment current script for answering tweets and build upon the success
Sentiment Analysis English 08— | p— stories. Develop user profiles to determine which script to use
o for each customer and develop training for the Twitter Team in
96% Tweets of American Airlines " | | Ryanair order to make more positive changes in sentiment happen.
= o ez I —— « Customer tweets are more negative during the night than during
74% Tweets of complete dataset £ Emj:m= the day. Therefore, the night shift of the Twitter Team should
| A o P S S S S consist of especially well-trained staff that know how to deal
, o , , s uantzs | with upset customers well.
Sentiment analysis is only applied to conversations that start 5 | 5 S Y S . Ameri Airl " . . 1 onl
with an English Tweet. The sentiment of each conversation is ° N | [ ——— melll’lcan |r|nesf as a great reslponse time, but St(; on%/ d
analyzed using V.A.D.E.R,, v1vhich iIs a valence-based approach. 55—t | Easyet I iSr;nSrov:mgrL:Fst r?avetwt?:; ';ageep |teod irﬁzre(jsbeoutthe%s/eoatirﬁetrit
Advantages of V.A.D.ER. are": , , , e e e change, the activities of the Twitter Team should be expanded,
Reeognlzes and includes slang into B B P s Posiive change  WER Nochange  EEN Negaive change focusing on answering more tweets and not so much on reply
lexicon Figure 8: Comparison of relative change in sentiment time.

Figure 7: Change of sentiment per category over all conversations

COnSiderS Syntax and context (incl. standard deviation) (excluding 2-tweet conversations) Eva I u atiO n & I m p r0ve
Change in Sentiment per Conversation Length
Negative or Very Negative Initial Tweet Neutral Initial Tweet Positive or Very Positive Initial Tweet

Recognizes capitalization ) ) Although this project has been handled with the utmost care, there
| | IS always room for improvement.

- « V.A.D.E.R. has limitations when customers are negative in a polite
way. Future research could focus on a classifier specifically for
airline tweet sentiment analysis.

 The way a conversation has been defined limits the possibility of
researching aspects such as multiple participants in a
conversation.
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The V.A.D.E.R. analysis takes O(nm), in which n is the number of o= S I | 02 " " the d hablv h g . .
tweets and m is the length of the tweet. The accuracy of the | " . trnc?)r%aFI)Ztlen gffictiitatﬁreoreaal g/ha?wvee icr?L;Zitirgzr;\éersatlons to be
sentiment analysis is 85% (based on a test set from the R SN i 'Y owvemstonlength Y0 bl , p ' , 5 5 ' .
UniverSity of I\/Iichigan)z. According to Gilbert and Hutto (2014) Figure 9: Change of sentiment based on the sentiment category of initial tweet (incl. standard deviati * The Imtl-al tweet s Compared to the AVETase -Of the -remalmng
V.A.D.E.R. outperforms most classifiers and algorithms and is SRS = el stendard deviatiom tweets in order.to compensate for any m|scIaSS|f|cat!on by
therefore a very good method for analyzing tweet sentiment3. Sentiment per Airline V.A.D.E.R. in the final tweet. As a result, some changes might be
1.0 - | - - - - — wrongfully classified as negative and vice versa. Only those
0e | - Customer conversations that started positive or neutral, went very negative
= Ej and ended positive are wrongly classified in this situation.
1.0 ‘ 0.7 ‘ 0.1 ‘ - 0.1 ‘ -0.7 ‘ - 1.0 = 02  Possible outliers such as Christmas or the Black Lives Matter
QL
. . % 00 event have not been removed, which may have clouded the
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Y ositive eutra egative y N€s 02 overall results of the analyses.
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i _ ini Figure 10: Comparison of average customer and average airline sentiment 2https://www.kaggle.com/c/si650winter1
[FIrSt customer TWEEt] [Average Of remalnlng customer tweetS] (incl. standard deviation and averages for Airline and Customer sentiment) 3httrz)://comp.so%%al.gatech.edu/papers/icwsm14.Vader.hutto.pdf
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